by சிவா Today at 19:38
» சமூக ஊடக செய்திகள் | பல்சுவை தகவல்கள்
by சிவா Today at 18:42
» மாநிலத்தின் செயல்பாட்டை முடக்கும் ஆளுநர் பதவி தேவையா?
by சிவா Today at 18:11
» 6 ஆண்டுகளில் 10,814 என்கவுன்ட்டர்கள்... உ.பி-யில் நடப்பது சட்டத்தின் ஆட்சியா?
by சிவா Today at 18:07
» அதிமுக vs பா.ஜ.க.
by சிவா Today at 17:54
» தமிழ்நாடு பட்ஜெட் 2023-2024
by சிவா Today at 17:45
» [மின்னூல்] உடல், பொருள், ஆனந்தி - ஜாவர் சீதாராமன்
by சிவா Today at 13:56
» கொரோனா - செய்திகள், வழிகாட்டிகள், எச்சரிக்கைகள்
by சிவா Today at 6:39
» ஈகரை வருகை பதிவேடு
by சிவா Today at 6:31
» மந்திரங்கள்
by சிவா Today at 6:19
» மாதம் ரூ.1,000 உரிமைத்தொகை பெற தகுதியானவர்கள் யார்?
by சிவா Today at 5:11
» கல்யாணம் முதல் கருவுறுதல் வரை - உணவு முறை
by சிவா Today at 5:03
» ஸ்ரீராம தரிசனம்
by சிவா Today at 3:59
» பிக்மென்டேஷன் எதனால் ஏற்படுகிறது? அதற்கான தீர்வு என்ன?
by சிவா Today at 0:54
» கருத்துப்படம் 21/03/2023
by mohamed nizamudeen Yesterday at 10:16
» நோய் எதிர்ப்பு சக்தியை அதிகரிக்க என்ன சாப்பிடலாம்? வைட்டமின் மாத்திரைகள் உடலுக்கு நல்லதா?
by சிவா Yesterday at 5:02
» சீனாவில் மோடியின் பெயர் ‘லாவோக்சியன்’: #modi_laoxian
by சிவா Yesterday at 4:47
» நான் சென்று வருகிறேன், உறவுகளே.. மீண்டும் சந்திப்போம்
by T.N.Balasubramanian Mon 20 Mar 2023 - 23:38
» மகா பெரியவாளும் காந்திஜியும்
by T.N.Balasubramanian Mon 20 Mar 2023 - 21:53
» வல்லாரை கீரையின் மகிமைகள்
by T.N.Balasubramanian Mon 20 Mar 2023 - 19:39
» மனதை ஒருநிலைப்படுத்தும் உணர்ச்சி நுண்ணறிவு
by Dr.S.Soundarapandian Mon 20 Mar 2023 - 15:19
» உலகச் செய்திகள்!
by சிவா Sun 19 Mar 2023 - 23:48
» வியர்வை வாடை: காரணம், தீர்வுகள், கட்டுப்படுத்தும் வழிகள்
by T.N.Balasubramanian Sun 19 Mar 2023 - 23:41
» உங்களுக்கு வந்திருப்பது கொரோனா தொற்றா அல்லது H3N2-வா அல்லது N1N1 தொற்றா?
by சிவா Sun 19 Mar 2023 - 23:37
» பாலி மொழியும் தமிழர் அறிந்த சொற்களும் !- (14)
by T.N.Balasubramanian Sun 19 Mar 2023 - 23:34
» மகிழ்ச்சியான மணவாழ்க்கைக்கு 30 கட்டளைகள்
by Dr.S.Soundarapandian Sun 19 Mar 2023 - 23:32
» கும்பத்தில் வலுவாகும் சனி:
by சிவா Sun 19 Mar 2023 - 23:32
» பூண்டு சாப்பிடுவதால் ஏற்படும் நன்மைகள்
by சிவா Sun 19 Mar 2023 - 23:30
» அண்ணாமலையின் பேச்சுக்கு, நான் பதவுரை எழுத முடியாது! - வானதி சீனிவாசன்
by T.N.Balasubramanian Sun 19 Mar 2023 - 23:15
» நரம்பு மண்டலம் பாதிப்படைந்து இருப்பதை உணர்த்தும் சில அறிகுறிகள்
by சிவா Sun 19 Mar 2023 - 23:05
» தமிழக அரசியல் செய்திகள்
by Dr.S.Soundarapandian Sun 19 Mar 2023 - 16:24
» கோஹினூர் வைரம்
by Dr.S.Soundarapandian Sun 19 Mar 2023 - 16:18
» ரௌடியை பிரதமர் கையெடுத்துக் கும்பிட்டது ஏன்?
by சிவா Sun 19 Mar 2023 - 3:00
» லண்டன் கண்காட்சியில் காட்சிப்படுத்தப்பட உள்ள கோஹினூர் வைரம்
by சிவா Sun 19 Mar 2023 - 2:53
» தேவாலயத்திற்கு வரும் பெண்களை நிர்வாண வீடியோ எடுத்து மிரட்டியதாக பாதிரியார்
by T.N.Balasubramanian Sat 18 Mar 2023 - 20:14
» சிறப்பு குழந்தைகள்! கவிஞர் இரா.இரவி
by eraeravi Fri 17 Mar 2023 - 23:11
» பற்களை பராமரிப்பதில் நாம் செய்யும் தவறுகள்
by T.N.Balasubramanian Fri 17 Mar 2023 - 22:04
» உலக தூக்க தினம் - மார்ச் 17
by T.N.Balasubramanian Fri 17 Mar 2023 - 20:51
» 18 நாடுகள் இந்திய ரூபாயில் வர்த்தகம் செய்ய அனுமதி
by T.N.Balasubramanian Fri 17 Mar 2023 - 20:40
» அதிகம் மாசடைந்த நகரங்களின் பட்டியலில் முன்னணியில் இந்தியா
by mohamed nizamudeen Fri 17 Mar 2023 - 12:26
» கடன் வாங்கி ஆடம்பரத் திருமணம் செய்ய வேண்டாமே...
by Dr.S.Soundarapandian Fri 17 Mar 2023 - 0:33
» வெளிநாட்டு வழக்கறிஞர்கள் இந்தியாவில் பயிற்சி செய்யலாம், ஆனால் நீதிமன்றத்தில் ஆஜராக முடியாது
by Dr.S.Soundarapandian Fri 17 Mar 2023 - 0:30
» 3 வல்லரசுகள் உருவாக்க திட்டமிடும் அணுசக்தி நீர்மூழ்கி படை
by Dr.S.Soundarapandian Fri 17 Mar 2023 - 0:24
» முதுமலையில் படமாக்கப்பட்ட ஆவணப்படம் ஆஸ்கர் விருது வென்றுள்ளது
by Dr.S.Soundarapandian Fri 17 Mar 2023 - 0:16
» கண் அழுத்த நோய் - Glaucoma
by சிவா Thu 16 Mar 2023 - 22:47
» ஆன்லைன் சூதாட்டமும் அரசியல் சூதாட்டமும்
by சிவா Thu 16 Mar 2023 - 19:58
» போதை வலையில் சிறுவர்கள்... என்னவாகும் தமிழ்நாடு?
by T.N.Balasubramanian Thu 16 Mar 2023 - 19:49
» 5,000 கலை அம்சங்கள் உடன் 5,000 ஆண்டுகால இந்திய நாகரிகத்தை சிறப்பிக்கும் புதிய நாடாளுமன்ற கட்டிடம்
by சிவா Thu 16 Mar 2023 - 19:30
» பிரதமர் ஸ்ரீ நரேந்திர மோடி - செய்தித் தொகுப்புகள்!
by சிவா Thu 16 Mar 2023 - 18:39
» முத்துலட்சுமி ராகவன் நூல்கள்
by சிவா Thu 16 Mar 2023 - 6:05
சிவா |
| |||
T.N.Balasubramanian |
| |||
Dr.S.Soundarapandian |
| |||
mohamed nizamudeen |
| |||
venkat532 |
| |||
கோபால்ஜி |
|
சிவா |
| |||
T.N.Balasubramanian |
| |||
Dr.S.Soundarapandian |
| |||
mohamed nizamudeen |
| |||
Dhivya Jegan |
| |||
Elakkiya siddhu |
| |||
ஜாஹீதாபானு |
| |||
eraeravi |
| |||
THIAGARAJAN RV |
| |||
Kannasme |
|
கணிதமேதை சுப்பையா சிவசங்கரநாராயண பிள்ளை

கணிதம் என்றாலே பலருக்கும் இந்தியாவில், குறிப்பாக தமிழ்நாட்டில், நினைவில் தோன்றுவது கணித மேதை ராமானுஜனின் பெயர் என்பதில் சந்தேகமில்லை.ராமானுஜன் என்ற கணித மேதையின் சூரிய ஒளியை ஒத்த பிரகாசத்தில் அவருக்குப்பின் வந்த இந்திய கணித நட்சத்திரங்கள் கண்டுகொள்ளப்படவில்லை. இசை மற்றும் விளையாட்டு உலகில் இருப்பது போல் “Hall of Fame” என முதன்மையான இந்தியக் கணித அறிஞர்களைத் தேர்ந்தெடுத்தால் அதில் தமிழ்நாட்டிலிருந்து எஸ்.எஸ். பிள்ளை அவர்கள் சந்தேகமில்லாமல் இடம் பெறுவார். ராமானுஜன் லண்டன் சென்று கணித ஆராய்ச்சி மேற்கொள்ள உதவிய ஹார்டி, “ராமானுஜனுக்குப் பிறகான சிறந்த இந்தியக் கணித மேதை பிள்ளை அவர்கள்தான்” எனக் கூறியுள்ளது பிள்ளை அவர்களின் திறமையை பறைசாற்றுவதாக அமைகிறது.
எஸ்.எஸ்.பிள்ளை 1901 ஆம் ஆண்டு நெல்லை மாவட்டத்தில் இருக்கும் குற்றாலத்திற்கு அருகில் உள்ள வல்லம் என்ற ஊரில் பிறந்தார். ஒரு வயதில் தன் தாயை இழந்தார்.பள்ளி இறுதி ஆண்டில் தன் தந்தையையும் இழந்து துன்பப்பட்ட சமயம் சாஸ்திரியார் என்ற ஆசிரியர் இவரை ஆதரித்து ஊக்கம் கொடுத்தார். பிறகு நாகர்கோயில் ஸ்காட் கிறிஸ்டியன் கல்லூரியில் தனது புகுமுகப்பு வகுப்பு (intermediate class) படித்து விட்டு, திருவனந்தபுரத்தில் இருந்த மஹாராஜா கல்லூரியில் தன் பட்டப் படிப்பை முடித்தார். சென்னை பல்கலைக்கழகத்தில் கணித ஆராய்ச்சிக்கான ஸ்காலர்ஷிப் கிடைக்கப் பெற்று, அப்போது புகழ் பெற்ற கணித பேராசியர்கள் ஆனந்த ராவ் மற்றும் வைத்தியநாதஸ்வாமியுடன் இணைந்து எஸ்.எஸ்.பிள்ளை கணித ஆராய்ச்சியில் ஈடுபட்டார். பின்னர் அண்ணாமலை பல்கலைத்தில் (1929-1941 ) பணிபுரியும்போது தொடர்ந்து எண்கணிதம் என்ற கணிதப் பிரிவில் தன் ஆராய்ச்சியை மேற்கொண்டார்.
இந்த ஆராய்ச்சியில் அவர் அடைந்த உயரங்கள் பிரமிக்கத்தக்கவை. கணிதத்தில் அன்றிருந்த மெட்ராஸ் பல்கலைக் கழகத்தில் D.Sc பட்டம் பெற்ற முதல் கணிதவியலாளர் பிள்ளை அவர்கள்தான். பிள்ளை அவர்கள் வாழ்க்கை முறை மிகவும் எளிமையானது. பிள்ளை அவர்களுக்கு கோட்டு, டை போடுவது கூட பிடிக்காது. தன் வீட்டிற்கு வரும் வெளிநாட்டு விருந்தினருக்கும் இலை போட்டு தரையில் அமர்த்தி தமிழ் முறைப்படி தான் உணவு உபசரிப்பு நடக்குமாம. ஆனால் இவர் எந்தப் புகழுக்கும் ஆசைப்பட்டவரில்லை. எந்த ஒரு கணிதம் மற்றும் அறிவியல் கழகங்களில் உறுப்பினராகக் கூட இருந்ததில்லை என்பது குறிப்பிடத்தக்கது.
பிள்ளை அவர்கள் பெயரை C.V ராமன் அவர்கள் இந்திய அறிவியல் கழகத்தின் ஃ’பெல்லோஷிப்பிற்கு பரிந்துரைத்தற்கான கடிதம் ஒன்று இருக்கிறது. K. ராமச்சந்திரா என்ற கணிதவியலாளர் ஒரு முறை இந்தியக் கணித வரலாற்று நிபுணர் ஒருவரிடம் உரையாடும்போது அவர் பிள்ளை அவர்களை அறிந்திருக்கவில்லை என்பது ஆச்சரியமாக இருந்ததாகக் கூறியுள்ளார். துரதிருஷ்டவசமாக 1950 ஆம் ஆண்டு அமெரிக்காவிலுள்ள பிரின்ஸ்டன் பல்கலைக் கழகத்தில் நடைபெற்ற மாநாட்டிற்கு செல்லும் போது கெய்ரோவில் நடந்த விமான விபத்தில் உயிரிழந்தார். அது இந்தியக் கணிதத் துறைக்கு மிகப் பெரிய இழப்பு என்பதில் சந்தேகமேயில்லை.
ராமானுஜனுக்கு அடுத்தத் தலைமுறையில் வந்த இந்தியக் கணித மேதைகளான பிள்ளை மற்றும் சர்வதமன் சௌலா இருவரும் மிக முக்கியமானவர்கள். 1929 ஆம் ஆண்டு தொடங்கிய இந்த இருவருக்குமான கடிதத் தொடர்பு, பிள்ளை அவர்களின் எதிர்பாராத மரணம்வரை தொடர்ந்தது. சௌலா எழுதிய ஒரு கடிதத்தில் 175,95,9000 என்ற எண்தான் மூன்று வெவ்வேறு முறையில் இரண்டு முப்படி நேர் முழு எண்களின் கூட்டுத் தொகையாக (sum of two cubes in three different ways) எழுதப்படக்கூடிய மிகச் சிறிய எண் என்ற சுவையான தகவலைத் தந்துள்ளார். ராமானுஜனின் 1729 (sum of two cubes in two different ways) என்ற எண்ணுக்கான சிறப்பின் தொடர்ச்சியாக இதைக் கொள்ளலாம்.
பிள்ளை அவர்களின் அதிகபட்ச எண்கணிதஆராய்ச்சி முடிவுகள் டியொஃபாண்டஸின் (Diophantus of Alexandria) சமன்பாடுகள் குறித்த கேள்விகளுக்கான விடைகளை முன் எடுத்துச்செல்வதில் இருந்தது. மேலும் விகிதமுறா எண்களிலும் (irrational numbers) இவர் ஆராய்ச்சி மேற்கொண்டுள்ளார். எண் கணிதத்தில் ராமானுஜன் கொடுத்த ஒரு முடிவை பிள்ளை அவர்கள் மேலும் விரிவுபடுத்தி குறிப்பிட்ட டியோஃபாண்டஸின் சமன்பாடுகளுக்கு முழுத்தீர்வு கொடுத்துள்ளார். பிள்ளை அவர்கள் ஊகித்த ஒரு கணக்கு இன்றளவிலும் திறந்த கணக்காக, முடிவு கிடைக்காத ஒன்றாக உள்ளது என்பது குறிப்பிடத்தக்கது.
இந்திய அறிவியல்கூட்டமைப்பில் 1949 ஆம் ஆண்டுப் பேசும் போது பிள்ளை அவர்கள் கூறியது
”The audience may be a little disappointed at the scanty reference to Indian work. _ _ _ However, we need not feel dejected. Real research in India started only after 1910 and India has produced Ramanujan and Raman”
அந்த ராமானுஜன் மற்றும் ராமன் அவர்களின் வழித் தோன்றலாகப் பிள்ளை அவர்களை இன்று பார்ப்பதே சரியான அணுகுமுறையாகும்.பிள்ளை அவர்களுக்கு உரிய இடத்தைத் தமிழக மற்றும் மத்திய அரசும் கொடுப்பது அவருக்குச் செய்யும் பெரிய நன்றிக் கடனாக இருக்கும் என்பதில் ஐயமில்லை.
கணித ஆராய்ச்சி
எண் கணிதத்தில் கேட்கப்படும் கேள்விகள் சுலபமாக இருக்கும்.ஆனால் விடை காண்பது எளிதாக இருக்காது. பிள்ளை அவர்கள் எண் கணித ஆராய்ச்சியில் தீர்வு கண்ட சில கேள்விகளை இப்போது பார்ப்போம்.
நமக்குப் பகா எண்கள் (prime numbers) என்றால் தெரியும். 2,3,5,7,11,13,17,19,… இவை பகா எண்கள்.
சார்புப் பகா எண்கள் (relatively prime numbers) என்றால் என்ன?
இரண்டு எண்களுக்கான அதமப் பொது மடங்கு (அ.பொ.ம – Greatest Common Factor) 1 எனில் அந்த எண்களைச் சார்புப் பகா எண்கள் என அழைக்கிறோம். உதாரணத்துக்கு, 12 மற்றும் 21 என்ற இரண்டு எண்களுடையே அ.பொ.ம 3. ஆனால் 16 மற்றும் 21 என்ற எண்களிடையே அ.பொ.ம 1. எனவே 16 மற்றும் 21 சார்புப் பகா எண்களாகும். . (இங்கே இதைச் சோதித்தறியலாம்)
அடுத்தடுத்த எண்களுக்குப் பொதுவான காரணி இருக்காது. எனவே அந்த எண்களின் அ. பொ.ம 1. உதாரணமாக 8 மற்றும் 9 என்ற எண்களை எடுத்துக் கொள்ளலாம். 8, 9 சார்புப் பகா எண்களாகும். இதே போல் 8,9,10 என்று மூன்று அடுத்தடுத்த எண்களை எடுத்துக் கொண்டால் நடுவிலுள்ள எண்ணான 9 என்ற எண் 8 மற்றும் 10 க்கு சார்புப் பகா எண்ணாகும். இப்போது 8,9,10,11 என்ற நான்கு அடுத்தடுத்த எண்களில் 9 மற்ற எண்களுக்குச் சார்புப் பகா எண்ணாக இருக்கும்.
இது போல் அடுத்தடுத்து (consecutive) இருக்கும் எந்த 16 முழு எண்களை எடுத்துக் கொண்டாலும் எப்போதுமே அந்த 16 எண்களில் ஒரு எண்ணை மற்ற எண்களுக்குச் சார்புப் பகா எண்ணாக இருக்கும்படி கண்டறிய முடியும். இந்த முடிவை 1940 ஆம் ஆண்டு s.s. பிள்ளை அவர்கள் நிறுவினார்.
இதோடு நில்லாமல் இதற்கு அடுத்து பிள்ளை அவர்கள் நிறுவிய முடிவு தான் சுவையானது.
அதாவது, அடுத்தடுத்து இருக்கும் எந்த 17 முழு எண்களை எடுத்துக் கொண்டாலும் எப்போதுமே அந்த 17 எண்களில் ஓர் எண்ணை மற்ற எண்களுக்குச் சார்புப் பகா எண்ணாக இருக்கும்படி கண்டறிய முடியாது என்பதை நிறுவினார். உதாரணமாக 2184, 2185, 2186, 2187, 2188…..2200 முடிய இருக்கும் 17 எண்களில் ஒர் எண்ணை மற்ற எண்களுக்குச் சார்புப் பகா எண்ணாகக் கண்டறிய முடியாது. பிள்ளை அவர்களின் இந்த முடிவானது டியாஃபாண்டஸின் சமன்பாடு ஆராய்ச்சிகளில் முக்கியப் பங்காற்றியுள்ளது என்பது குறிப்பிடத்தக்கது – இந்தச் சமன்பாட்டுக்கான ஒரு எளிய அறிமுகம் இங்கே இருக்கிறது : ஹில்பர்ட்டின் பத்தாம் கணக்கு.
பிள்ளை அவர்களின் மிக முக்கியப் பங்களிப்பு வாரிங் கணக்கு என்ற புகழ் பெற்ற கணக்கிற்கு அவர் கண்ட தீர்வு எனக் கூறலாம்.
கணிதத்தின் நுழைவாயில் இயல் எண்கள். அதாவது 1,2,3,4,5….6,7,8,9,10…. என முடிவில்லாமல் தொடரும் எண்கள். இயற்கையில் இருக்கும் அழகை கவிஞன் ரசித்து அழகான கவிதைகளை உருவாக்குகிறான்.அதே போன்று கணிதவியலாளர்கள் கவிதை அழகியலை ஒத்த இயலை, எண்களுக்குள் மறைந்திருக்கும் மர்மங்களாக வெளிக்கொணர்கிறார்கள்.
லக்ராஞ்ச் (1770) இயல் எண்களைக் குறித்த ஒரு முடிவை முன்வைத்தார். அது என்ன என்று முதலில் பார்ப்போம் .
நமக்கு வர்க்க எண் என்றால் தெரியும். அதாவது 1 X 1=1^2=1, 2X 2=2^2=4, 3X 3=3^2=9…….. எனவே 1,4,9,16,25,36,49,64,81,100,121,……எனத் தொடர்வன வர்க்க எண்களாகும். லக்ராஞ்ச் என்ன சிந்தித்தார் எனில், ஒவ்வொரு இயல் எண்ணையும் வர்க்க எண்களின் கூட்டுத்தொகையாக எழுத முடியுமா?அப்படிச் செய்ய முடிந்தால் அதிகபட்சம் எத்தனை வர்க்க எண்ணின் கூட்டுத் தொகையாக எழுத முடியும் என ஆராய்ந்தார்.
இந்தக் கேள்விக்கு விடையாக வரும் எந்த ஓர் இயல் எண்ணும் ஒன்று அதுவே வர்க்க எண்ணாக இருக்கும். அப்படி அது வர்க்க எண்ணாக இல்லாத பட்சத்தில் இரண்டு, மூன்று அல்லது அதிகபட்சம் நான்கு வர்க்க எண்களின் கூட்டுத் தொகையாக இருக்கும் என அவர் நிறுவினார் .
உதாரணமாக 4 ஒரு வர்க்க எண். 5=2^ 2+1^ 2. இவ்வாறு 5 என்ற எண்ணை இரண்டு வர்க்க எண்களின் கூட்டுத் தொகையாக எழுத முடிகிறது.அதே போன்று 6= 2^ 2+1^ 2+1^ 2 என்று மூன்று வர்க்க எண்களின் கூட்டுத் தொகையாக 6 ஐ எழுத முடிகிறது. ஆனால் 7=2^ 2+1^ 2+1^ 2+1^ 2.இங்கு 7 க்கு நான்கு வர்க்க எண்களின் கூட்டுத்தொகை தேவையாகிறது.
இப்போது ஒரு கேள்வி எழலாம்.அது என்ன எந்த இயல் எண்ணையும் வர்க்க எண்ணின் கூட்டுத் தொகையாக மட்டும் எழுதுவது. ஏன் முப்படி எண்கள் (cubes), கூட்டுத் தொகையாக எழுத முடியாதா? அப்படி எழுத முடிந்தால் அதிகபட்சம் எத்தனை முப்படி எண்களின் கூட்டுத் தொகையாக எழுத முடியும் எனவும் யோசிக்கத் தோன்றுகிறது. அதே போல் நான்கு படி எண்கள் (fourth power), ஐந்து படி, ஆறு படி என இந்த முடிவைத் தொடர முடியுமா எனவும் சிந்திக்கத் தோன்றுகிறது.
இதைத் தான் எட்வர்ட் வாரிங் (1736-1798) ஒவ்வொரு முழு எண்ணும், ஒன்று முப்படி எண்ணாக இருக்கும் (third power or cube), அல்லது இரண்டு, மூன்று,….என அதிக பட்சமாக ஒன்பது முப்படி எண்களின் கூட்டுத் தொகையாக இருக்கும் என்றார். அதே போல் ஒவ்வொரு முழு எண்ணும் நான்கு படி எண்ணாக இருக்கும் (fourth power), இல்லையெனில் இரண்டு, மூன்று …..என அதிக பட்சமாக பத்தொன்பது நான்கு படி எண்களின் கூட்டுத்தொகையாக இருக்கும் என ஊகித்திருந்தார். இதே போன்று மற்ற அடுக்குகளுக்கும் முடிவுகள் கொடுக்க முடியும் எனவும் ஊகித்திருந்தார்..உதாரணமாக,
23 = 2^3 + 2^3+1^3+1^3+1^3+1^3+1^3+1^3+1^3 என்பதைக் காணலாம்.(2^3 = 2X2X2)
மேலும்,
79 = 2^4+ 2^4+2^4+2^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4+1^4.
பிள்ளை அவர்கள் எந்த ஒரு முழு எண்ணையும் அதிகபட்சமாக 73 ஆறுபடி எண்களின் கூட்டுத் தொகையாக (maximum of sum of 73 sixth powers) எழுதமுடியும் என நிறுவினார். 2^6=64 எனக் காண்பது எளிது. எனவே 703 = 2^6 X10 + 63 x 1^6.இதிலிருந்து 703 என்ற எண்ணை ஆறுபடி எண்களின் கூட்டுத் தொகையாக எழுத 73 ஆறுபடி எண்கள் தேவைப் படுகிறது என்பது தெளிவாகிறது.
இதைத் தொடர்ந்து எந்த ஒரு முழு எண்ணையும் அதிகபட்சம் நான்கு படி எண்களின் கூட்டுத் தொகையாக எழுத முடியும் என 1986 ஆம் ஆண்டு நிறுவியதில் சென்னையிலுள்ள இந்தியன் மேதமேடிகல் நிறுவனத்தின் டையரக்டராக இருக்கும் R. பாலசுப்ரமணியன் அவர்களுக்கு முக்கியப் பங்கு இருந்தது என்பது நினைவில் கொள்ள வேண்டிய ஒன்று.
மேலும் பிள்ளை அவர்கள் அடுக்கு எண்கள் தொடர்பாக ஓர் ஊகத்தைக் கொடுத்துள்ளார். முதலில் அடுக்கு எண் என்றால் என பார்ப்போம் .
1X 1 = 1^ 2 =1
2X 2 = 2^ 2 =4
2X 2X 2 =2^ 3 =8
3X 3 = 3^ 2=9
4X 4 = 4^ 2=16
3X 3X 3 = 3^ 3=27
…
1,4,8,9,16,27,36,49,64,81,100,121,128,144,…..என்பவைகளை அடுக்கு எண்கள் (perfect powers) என்கிறோம்.
1,4,8,9,16,25,27,32,36,49,64,81,100,121,125,128…..எனத் தொடரும் அடுக்கு எண்களுக்குக்கிடையே ஆன வித்தியாசத்தைப் பற்றிய ஊகத்தைத் தான் கொடுத்துச் சென்றுள்ளார் அவர்.
இந்தத் தொடரில் அடுத்ததடுத்து வரும் எண்களின் வித்தியாசத்தைப் பார்ப்போம்.
9-8 = 1,
27-25= 2,
4-1=3,128-125=3,
8-4 = 4, 36-32=4,
32-27=5,…என வருவதைக் காணலாம். இதில் 3 என்ற வித்தியாசம் இது வரை இரண்டு முறை வந்திருக்கிறது.அதே சமயம் 4 என்ற வித்தியாசம் மூன்று முறை வந்திருக்கிறது.இது போல் எந்த ஒரு குறிப்பிட்ட எண்ணை எடுத்தாலும் அது இரண்டு அடுத்தடுத்த அடுக்கு எண்களின் வித்தியாசமாக எண்ணக் (finite number of times) கூடிய அளவில் தான் வரும். அதாவது 100,200 என ஒரு குறிப்பிட்ட அளவில் தான் வரும். எண்ணிலடங்காத முறை எந்த எண்ணும் இந்தத் தொடரில் இரண்டு அடுத்தடுத்த எண்களின் வித்தியாசமாக வர முடியாது என ஊகித்துள்ளார். இது வரை 1 வித்தியாசமுள்ள அடுத்தடுத்த அடுக்குத் தொடர் எண்கள் 8 மற்றும் 9 மட்டும் தான் என்பதை நிரூபித்துள்ளார்கள். மேலும் விடை காண ஆராய்ச்சி தொடர்ந்து நடந்து வருகிறது. மனித இனத்தின் முடிவில்லாத தேடலில் தொடரும் ஒரு பகுதியே இது.
சாதனைகள்:
76 ஆய்வுக்கட்டுரைகள் எழுதினார். அவை பெரும்பாலும் எண் கோட்பாட்டைப்பற்றியும் டயோபாண்டஸ் தோராயத்தைப் பற்றியும் இருந்தன.
1) வாரிங் பிரச்சினையில் கண்டுபிடிப்பு
எண் கோட்பாட்டில் வாரிங் பிரச்சினையைப் பற்றிய ஒரு முக்கியமான கண்டுபிடிப்பைச் செய்து சரித்திரம் படைத்தார். 1909இல் டேவிட் ஹில்பர்ட் வாரிங் பிரச்சினையைப் பற்றிய ஓர் அடிப்படைத் தேற்றத்தை நிறுவினார்.
ஹில்பர்ட்-வாரிங் தேற்றம்: ஒவ்வொரு நேர்ம முழு எண் k க்கும் g(k) என்ற ஒரு மீச்சிறு நேர்ம முழு எண் கீழுள்ள பண்புடன் இருக்கும்:
எந்த நேர்ம முழு எண்ணையும் g(k) எண்ணிக்கை கொண்ட k - அடுக்குகளின் கூட்டுத் தொகையாகக் காட்டலாம். அதாவது, எத்தனை குறைந்த எண்ணிக்கை கொண்ட k-அடுக்குகளின் கூட்டுத்தொகையாக எல்லா முழுஎண்களையும் சொல்லமுடியுமோ அந்த எண்ணிக்கை g(k)யாகும்.
எடுத்துக்காட்டாக, g(2) = 4. அதாவது, எந்த எண்ணையும் நான்கு எண்ணிக்கைக்கு அதிகமில்லாத எண்களின் வர்க்கங்களின் கூட்டுத்தொகையாகக் காட்டலாம். குறிப்பாக
27 = 16 + 9 + 1 + 1
32 = 16 + 16
77 = 36 + 36 + 4 + 1
200 = 100 + 64 + 36
1770 இலேயே (லாக்ரான்சி) g(2) = 4 என்பது தெரியும். 1910 இலிருந்து g(3) = 9 என்பதும் தெரியும்.
பிள்ளையின் கண்டுபிடிப்பு: (1936). 7 அல்லது 7 க்கு மேலுள்ள எல்லா k க்கும், g(k) = 2k + l − 2; இங்கு, l என்பது (3 / 2)kஐ விட பெரியதல்லாத மீப்பெரு முழு எண். k = 6 என்ற பட்சத்திலும் 1940 இல் இன்னும் கடினமான ஒரு முறையில் g(6) = 73 என்றும் கணித்தார்.
பிள்ளை பகா எண்கள்:
அவர் கண்டுபிடித்த ஒருவித பகா எண்களுக்கு பிள்ளை பகா எண்கள் என்ற பெயர் நிலைத்துவிட்டது. பகாஎண் p கீழ்வரும் பண்பை உடையதாக இருந்தால் அது பிள்ளை பகா எண் எனப்படும்:
ஒரு நேர்ம முழு எண் இருக்கவேண்டும். அது சரி செய்ய வேண்டிய சமன்பாடுகள்:
(*) n! = − 1modp
இதன் பொருள்: n!, pஇன் ஏதோ ஒரு மடங்கை விட ஒன்று குறைவு. மற்றும், p − 1, nஇன் எந்த மடங்காவும் இருக்காது.
எடுத்துக்காட்டாக, 79 ஒரு பிள்ளை பகா எண். ஏனென்றால்,
23! + 1, 79 ஆல் சரியாக வகுபடுகிறது. மற்றும், 78, 23இன் எந்த மடங்கும் இல்லை. ஆக, 79 க்குகந்ததாக 23 என்ற n உள்ளது.
முதல் 39 பிள்ளை பகா எண்கள்:
23,29,59,61,67,71,79,83,109,137,139,149,193,227,233,239,251,257,269,271,277,293,307,311,317,359,379,383,389,397,401,419,431,449,461,463,467,479,499
இத்தொடர் முடிவில்லாதது என்று எர்டாஷ், சுப்பராவ், ஹார்டி முதலியவர்கள் கண்டுபிடித்திருக்கிறார்கள்.
- T.N.Balasubramanianதலைமை நடத்துனர்
- பதிவுகள் : 33690
இணைந்தது : 04/02/2010

நாம் அறிந்தவர்கள் யாவரும் ராமாநுஜனும் சகுந்தலாதேவியும்தான்

* கருத்துக்களை ரத்தினச்சுருக்கமாக கூற பழகிக் கொண்டால்
வாக்கில் பிரகாசம் உண்டாவதுடன், சக்தியும் வீணாகாமல் இருக்கும்*. ----"காஞ்சி மஹா பெரியவா "
சாதிமதங்களைப் பாரோம் - உயர்சன்மம் இத் தேசத்தில் எய்தினராயின்
வேதியராயினும் ஒன்றே - அன்றி வேறுகுலத்தினராயினும் ஒன்றே - பாரதி
சிவா இந்த பதிவை விரும்பியுள்ளார்
- GuestGuest


மறுமொழி எழுத நீங்கள் உறுப்பினராக இருக்க வேண்டும்..
ஈகரையில் புதிய பதிவு எழுத அல்லது மறுமொழியிட உறுப்பினராக இணைந்திருத்தல் அவசியம்